首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
  国内免费   1篇
大气科学   2篇
地球物理   4篇
地质学   11篇
海洋学   8篇
天文学   2篇
自然地理   1篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2009年   1篇
  2008年   5篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2002年   1篇
  1998年   1篇
  1997年   1篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
21.
The mineral barite (BaSO4) accommodates calcium in its crystal lattice, providing an archive of Ca-isotopes in the highly stable sulfate mineral. Holocene marine (pelagic) barite samples from the major ocean basins are isotopically indistinguishable from each other (δ44/40Ca = −2.01 ± 0.15‰) but are different from hydrothermal and cold seep barite samples (δ44/40Ca = −4.13 to −2.72‰). Laboratory precipitated (synthetic) barite samples are more depleted in the heavy Ca-isotopes than pelagic marine barite and span a range of Ca-isotope compositions, Δ44/40Ca = −3.42 to −2.40‰. Temperature, saturation state, , and aCa2+/aBa2+ each influence the fractionation of Ca-isotopes in synthetic barite; however, the fractionation in marine barite samples is not strongly related to any measured environmental parameter. First-principles lattice dynamical modeling predicts that at equilibrium Ca-substituted barite will have much lower 44Ca/40Ca than calcite, by −9‰ at 0 °C and −8‰ at 25 °C. Based on this model, none of the measured barite samples appear to be in isotopic equilibrium with their parent solutions, although as predicted they do record lower δ44/40Ca values than seawater and calcite. Kinetic fractionation processes therefore most likely control the extent of isotopic fractionation exhibited in barite. Potential fractionation mechanisms include factors influencing Ca2+ substitution for Ba2+ in barite (e.g. ionic strength and trace element concentration of the solution, competing complexation reactions, precipitation or growth rate, temperature, pressure, and saturation state) as well as nucleation and crystal growth rates. These factors should be considered when investigating controls on isotopic fractionation of Ca2+ and other elements in inorganic and biogenic minerals.  相似文献   
22.
The association between heat waves and the urban heat island effect can increase the impact on environment and society inducing biophysical hazards. Heat stress and their associated public health problems are among the most frequent. This paper explores the heat waves impact on surface urban heat island and on the local economy loss during three heat periods in Cluj-Napoca city in the summer of 2015. The heat wave events were identified based on daily maximum temperature, and they were divided into three classes considering the intensity threshold: moderate heat waves (daily maximum temperature exceeding the 90th percentile), severe heat waves (daily maximum temperature over the 95th percentile), and extremely severe heat waves (daily maximum temperature exceeding the 98th percentile). The minimum length of an event was of minimum three consecutive days. The surface urban heat island was detected based on land surface temperature derived from Landsat 8 thermal infrared data, while the economic impact was estimated based on data on work force structure and work productivity in Cluj-Napoca derived from the data released by Eurostat, National Bank of Romania, and National Institute of Statistics. The results indicate that the intensity and spatial extension of surface urban heat island could be governed by the magnitude of the heat wave event, but due to the low number of satellite images available, we should consider this information only as preliminary results. Thermal infrared remote sensing has proven to be a very efficient method to study surface urban heat island, due to the fact that the synoptic conditions associated with heat wave events usually favor cloud free image. The resolution of the OLI_TIRS sensor provided good results for a mid-extension city, but the low revisiting time is still a drawback. The potential economic loss was calculated for the working days during heat waves and the estimated loss reached more than 2.5 mil. EUR for each heat wave day at city scale, cumulating more than 38 mil. EUR for the three cases considered.  相似文献   
23.
n-Alkane biomarker distributions in sediments from Swamp Lake (SL), in the central Sierra Nevada of California (USA), provide evidence for an increase in mean lake level ~ 3000 yr ago, in conjunction with widespread climatic change inferred from marine and continental records in the eastern North Pacific region. Length distributions of n-alkane chains in modern plants growing at SL were determined and compared to sedimentary distributions in a core spanning the last 13 ka. As a group, submerged and floating aquatic plants contained high proportions of short chain lengths (< nC25) compared to emergent, riparian and upland terrestrial species, for which chain lengths > nC27 were dominant. Changes in the sedimentary n-alkane distribution over time were driven by variable inputs from plant sources in response to changing lake level, sedimentation and plant community composition. A shift toward shorter chain lengths (nC21, nC23) occurred between 3.1 and 2.9 ka and is best explained by an increase in the abundance of aquatic plants and the availability of shallow-water habitat in response to rising lake level. The late Holocene expansion of SL following a dry mid-Holocene is consistent with previous evidence for increased effective moisture and the onset of wetter conditions in the Sierra Nevada between 4.0 and 3.0 ka.  相似文献   
24.
Deposits preserved on peaks in the southern Peruvian Andes are evidence for past glacial fluctuations and, therefore, serve as a record of both the timing and magnitude of past climate change. Moraines corresponding to the last major expansion of ice on Nevado Coropuna date to 20‐25 ka, during the last glacial maximum. We reconstructed the snowline at Coropuna for this period using a combined geomorphic‐numeric approach to provide a first‐order estimate of the magnitude of late‐Pleistocene climate change. Our reconstructions show that snowline was approximately 550‐770 m lower during the last glacial maximum than during the late Holocene maximum, which ended in the 19th century, and ~750 m lower than today. While these values are similar to data from nearby Nevado Solimana, reconstructions from the neighbouring peak of Nevado Firura reveal a smaller snowline depression, suggesting the glacial response to climate forcing in the tropics is strongly influenced by non‐climatic factors. These data constitute some of the first directly dated palaeo‐snowline data from the arid tropics and suggest that the magnitude of the last glaciation in at least parts of the tropical Andes was similar to late‐Pleistocene events at higher latitudes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
25.
Radium isotopes (223Ra, 224Ra, 226Ra, and 228Ra) and water chemistry were used to identify two chemically distinct sources of submarine groundwater discharge (SGD) in Celestún Lagoon, Yucatán, Mexico. Low salinity groundwater discharging from springs within the lagoon has previously been identified and extensively sampled for nutrient concentrations. However, a second type of groundwater discharging into the lagoon was detected during this study using radium isotope activity measurements. This second type of groundwater is characterized by moderate salinities (within the range of lagoon salinities) and very elevated radium activities in comparison to the low salinity groundwater, mixed lagoon water, and seawater. Further analysis showed that the two types of groundwater also have distinct chloride, strontium, and sulfate ratios, along with slightly different nutrient concentrations. Groundwater discharge occurs through large and small springs scattered throughout the lagoon, and both types of groundwater were detected discharging from one of the larger springs. The relative proportions of low salinity groundwater and brackish high radium groundwater varied over the tidal cycle. In order to better understand the relative contributions of each type of groundwater to the lagoon, a three end-member mixing model based on the distinct chemical and isotopic compositions of both types of groundwater and of seawater was used to estimate the distribution of each water type throughout the lagoon in different seasons. This study suggests that substantial groundwater discharge to the lagoon can occur during both dry and rainy seasons. The presence of two groundwater sources has implications for monitoring and protection of the Celestún Lagoon Biosphere Reserve, since the two sources may have different susceptibilities to anthropogenic contamination depending on their respective recharge area and recharge rates.  相似文献   
26.
Water quality monitoring in Hanalei Bay, Kaua`i (Hawai`i, USA) has documented intermittent high concentrations of nutrients (nitrate, phosphate, silica, and ammonium) and fecal indicator bacteria (FIB, i.e., enterococci and Escherichia coli) in nearshore waters and spurred concern that contaminated groundwater might be discharging into the bay. The present study sought to identify and track sources of nutrients and FIB to four beaches in Hanalei Bay and one beach outside the bay, together representing a wide range of land uses. 223Ra and 224Ra activity, salinity, nutrient and FIB concentrations were measured in samples from the coastal aquifer, the nearshore ocean, springs, the Hanalei River, and smaller streams. In addition, FIB concentrations in beach sands were measured at each site, and the enterococcal surface protein (esp) gene assay was used to investigate whether the observed FIB originated from a human source. Nutrient concentrations in groundwater were significantly higher than in nearshore water, inversely correlated to salinity, and highly site specific, indicating local controls on groundwater quality. Fluxes of groundwater into Hanalei Bay were calculated using a mass-balance approach and represented at least 2–10% of river discharges. However, submarine groundwater discharge (SGD) may provide 2.7 times as much nitrate + nitrite to Hanalei Bay as does the Hanalei River. It may also provide significant fluxes of phosphate and ammonium, comprising 15% and 20% of Hanalei River inputs, respectively. SGD-derived silica inputs to the bay comprised less than 3% of Hanalei River inputs. FIB concentrations in groundwater were typically lower than those in nearshore water, suggesting that significant FIB inputs from SGD are unlikely. Positive esp gene assays suggested that some enterococci in environmental samples were of human fecal origin. Identifying how nutrients and FIB enter nearshore waters will help environmental managers address pressing water quality issues, including exceedances of the state Enterococcus water quality standard and nutrient loading to coral reefs.  相似文献   
27.
28.
In October 1991 a high magnitude rainstorm flood, estimated return period 40 years, occurred in Nahal Zin, a 1400 km2 catchment in the hyperarid Negev Desert. The meso-scale structure of the storm was a curved squall line that developed from a thunderstorm in accordance with the topography of the catchment divide, by which it was strongly affected. Tropical moisture reached the area via the subtropical jet stream, in conjunction with a lower level northward intrusion of the Red Sea trough (RST-N) into the Mediterranean Sea. Rainfall, as measured at the few and sparse gauging stations, was much too small to account for the resulting large flood. Peak flow and other hydraulic characteristics of the flood were indirectly reconstructed. The techniques of palaeoflood hydrology used were based on sedimentological evidence of fine-grained flood sediments deposited in back-flooded tributaries, as well as on other stage indicators. The HEC-2 procedure was employed to determine water surface profiles. The spatial and temporal characteristics of the event were studied through a combination of rainstorm analysis, remote sensing, hydrological and sedimentological data; they jointly explain the magnitude and timing of tributary contributions producing the integrated flood in the main channel. The flood as reconstructed reveals a three-peak hydrograph: two peaks were generated by the same storm but had different floodwave arrival times in the main channel; the third resulted from a local rainstorm which occurred on the following day and covered only one tributary. The curved structure of the storm and its dynamics in relation to catchment orientation resulted in storm move- ment in tandem with the floodwave. The synchronous contribution from all main tributaries preserved evidence of the floodwave both in stage and volume by replacing the transmission losses in the sections with thick alluvium. Other high magnitude floods on record for the large Negev Desert catchments are caused by a cold upper air incursion associated with the RST-N. Most of them occur in the autumn and are caused by storms with high-intensity rainfall. This is in stark contrast with the flooding behaviour of the semi-arid zone further north, which is linked primarily to the core of the Mediterranean winter. The complexities involved in the generation of a large desert flood, as revealed by this study, illustrate the fallacy of applying routine hydrological modelling to such events, and underline the need to study the processes involved in adequate detail. © 1998 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号